Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revision | |
james_clerk_maxwell [2023/08/10 02:42] – [Electromagnetism] joellagace | james_clerk_maxwell [2023/08/10 03:51] (current) – [Kinetic theory and thermodynamics] joellagace |
---|
| |
In 1871, Maxwell's relentless pursuit of understanding thermodynamics led to the establishment of Maxwell's thermodynamic relations. These are intricate mathematical expressions that highlight the equality among the second derivatives of the thermodynamic potentials when compared across different variables. Taking inspiration from the pioneering work of American scientist Josiah Willard Gibbs, Maxwell, in 1874, created a visual representation using plaster to delve into phase transitions in thermodynamics. This was a tangible manifestation of Gibbs's graphical approach to thermodynamics, bridging the gap between abstract theory and visual comprehension. | In 1871, Maxwell's relentless pursuit of understanding thermodynamics led to the establishment of Maxwell's thermodynamic relations. These are intricate mathematical expressions that highlight the equality among the second derivatives of the thermodynamic potentials when compared across different variables. Taking inspiration from the pioneering work of American scientist Josiah Willard Gibbs, Maxwell, in 1874, created a visual representation using plaster to delve into phase transitions in thermodynamics. This was a tangible manifestation of Gibbs's graphical approach to thermodynamics, bridging the gap between abstract theory and visual comprehension. |
| |
| ==== Control theory ==== |
| |
| In a noteworthy contribution to the annals of science, James Clerk Maxwell unveiled his paper titled "On governors," which was featured in the prestigious Proceedings of the Royal Society, specifically in volume 16, spanning the years 1867 to 1868. This work stands as a cornerstone in the nascent stages of control theory. |
| |
| For context, the term "governors" in Maxwell's paper does not refer to political leaders, but rather to the mechanical device known as the centrifugal governor. This device played an instrumental role in the Industrial Revolution and beyond, as it was primarily used to regulate the speed of steam engines. The centrifugal governor operates based on principles of rotational mechanics and feedback loops to ensure that steam engines run at the desired speed. Maxwell's insights into this mechanism not only deepened the understanding of its function but also laid foundational concepts for the broader field of control theory, which deals with systems and their behaviors under different conditions. His work illuminated the complexities of systems that need constant adjustment and control, concepts that are ubiquitous in modern engineering and technology applications. |
| |
| |
| |
| |